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1. INTRODUCTION

As the use of elastomeric materials in helicopter lag dampers has become more
prevalent, the need for better methods for modelling these materials has become
evident [1, 2]. The two principal criteria that drive the need for "delity in damper
models are: (1) accurate prediction of damper energy dissipation; and (2) accurate
prediction of blade loading. The prediction of energy dissipation by the damper is
critical to the design of the rotor system, since the principal function of the damper
is to provide su$cient damping to prevent aeromechanical instabilities, such as
ground and air resonance. Accurate predictions of blade loads require that the
forces and moments in the lag damper load path are modelled adequately. This is of
particular importance when calculating rotor startup and aircraft maneuver loads,
since the damper motion is not simple harmonic under those conditions.

It is apparent that the behavior of the majority of elastomeric materials is
inherently non-linear, and dependent on displacement, deformation rate, and
temperature. This non-linear behavior has motivated analysts to devise various
methods of modelling these materials. Some investigators [1}4] have taken the
approach of using a simple Kelvin Solid model, then replacing the linear sti!ness
and damping constants with non-linear functions. This approach retains the
simplicity of the Kelvin Solid, while including some non-linear e!ects. Others [5}7]
have introduced increasingly complex solid models, which have a greater number of
sti!ness and/or damping components, and additionally have implemented non-linear
sti!ness and damping functions. This approach increases the complexity of the
damper representation, but improves the potential for enhanced modelling "delity.

Typically, the suppliers of helicopter lag dampers document the properties of the
dampers they deliver by applying a simple harmonic displacement to the damper
and recording the output force [4]. This type of testing is usually performed at
a frequency typical of the operational environment that will be seen by the damper,
and at amplitudes that encompass the range of displacements that the damper will
see in service. The question that arises when one considers implementing solid
models with increased complexity is: &&Is harmonic testing su$cient for the calcu-
lation of the additional parameters required for complex, non-linear models?''
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2. APPROACH

The approach taken herein is to investigate the testing requirements for three
linear solid models, then extend the results to non-linear damper models. First, it
will be shown that the data from simple test procedures can be used to calculate
unique sti!ness and damping parameters for the Kelvin Solid. Then, identical
methodology will be used on the Standard Solid to see if unique sti!ness and
damping constants can be calculated from data obtained by the same procedures.
Finally, the methodology will be applied to a Generalized Kelvin Solid.

As noted above, one of the principal characteristics of elastomeric materials is
that they exhibit non-linear behavior. Clearly, an investigation of linear damper
models is insu$cient for establishing a methodology that is applicable to the
calculation of non-linear damper properties. However, following the example of
reference [4], it will be shown that a connection can be made between the linear and
non-linear models.

3. LINEAR SOLID MODELS

For the following solid models, it will be assumed that the material properties are
linear. The equations of motion for each solid model will be solved using Laplace
transforms. For the Kelvin Solid, this solution procedure is somewhat unnecessary
since the solutions can be obtained by simple substitution. However, for the more
complex models, the Laplace transform solution allows closed-form solutions to be
obtained for each type of excitation.

Each of the damper models will be subjected to three di!erent testing procedures:
creep (constant applied force), ramp displacement (constant displacement rate), and
single-frequency harmonic displacement. These three test procedures were chosen
because they are commonly used, and because they are relatively easy to run in
a laboratory environment. The force applied for the creep simulation is f"fM, and
the corresponding Laplace transform of the force is F"fM /s. For the ramp displace-
ment simulation, the speci"ed displacement and its Laplace transform are u"vN t
and ;"vN /s2, respectively. The displacement applied for the harmonic displace-
ment simulation is speci"ed to be u"uN sinXt, where uN is the displacement ampli-
tude and X is the frequency. Then, the Laplace transform of the displacement can
be written as ;"XuN /(s2#X2). In all of the simulations, it is assumed that the
initial displacements and displacement rates are zero.

3.1. KELVIN SOLID

The Kelvin Solid is the simplest of the viscoelastic material models, and is the
traditional model used to represent the properties of an elastomeric material. Its
mechanical equivalent consists of a spring and dashpot in parallel [Figure 1],
where the sti!ness and damping parameters are constants.

In Figure 1, the force applied to the solid is f, and the sti!ness and damping of the
model are represented by k

1
and c

1
, respectively. The equation of motion for the



Figure 1. Kelvin Solid mechanical analogy.
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mechanical analogy of the Kelvin Solid shown in Figure 1 is

f"c
1
uR #k

1
u, (1)

where u"x
1
!x

0
. If it is assumed that the sti!ness and damping are constants,

then equation (1) can be transformed to

F"(c
1
s#k

1
);!c

1
uL , (2)

where F and ; are the Laplace transforms of the force f, and the displacement u,
respectively, and uL is the initial displacement.

Consider the creep test, where a constant force fM is applied to the damper (uL "0)
and the resulting displacement is measured. Substituting into equation (2) and
solving for u,

u"
fM

k
1

(1!e~j1t), (3)

where j
1
"k

1
/c

1
. In its relaxed state, when t is large and the transient term is

therefore small, only the constant k
1

can be calculated from the measured displace-
ment and the known force input. In order to calculate c

1
, the relaxation j

1
must be

measured while the material is reaching equilibrium, using k
1

which has been
calculated previously.

The test in which a constant displacement rate is maintained can also be used to
calculate both the sti!ness and damping constants. Substituting the Laplace trans-
form of a constant displacement rate into equation (2), solving for F, and taking the
inverse Laplace transform,

f"(c
1
#k

1
t)vN . (4)

The sti!ness constant k
1

can be determined from the slope of the measured force
curve. Since at time zero the force and displacement rate must both be zero in an
actual test (as opposed to a simulation), the damping constant c

1
is calculated by

projecting the constant slope back to time zero.



Figure 2. Standard Solid mechanical analogy.
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The harmonic displacement test is the technique that is most commonly used to
measure damper characteristics. If the Laplace transform of the sinusoidal displace-
ment is substituted into equation (2), the resulting equation can be solved for F. The
inverse transform of F can then be obtained, giving the force resultant from the
applied displacement:

f"uN (c
1
X cosXt#k

1
sin Xt). (5)

Since the measured force due to the harmonic displacement of the damper can be
Fourier transformed into its sine and cosine components (as described in reference
[4]), and since uN and X are known, both the constants c

1
and k

1
can be easily and

uniquely determined for a particular input amplitude and frequency. Therefore, for
a Kelvin Solid model of a linear material, the values of both constants c

1
and k

1
can be

calculated by using either harmonic excitation, creep, or a ramp displacement testing.

3.2. STANDARD SOLID

The Standard Solid is obtained by putting a spring in series with the Kelvin
Solid, described above. As compared to the Kelvin Solid, which is characterized
by two parameters, the Standard Solid is modelled by three parameters.
Figure 2 shows the mechanical equivalent of the model, which is schematically the
same as those used in references [5, 7]. However, in reference [5], only the k

1
sti!ness was assumed to be non-linear; while in reference [7] the damping and both
sti!nesses were modelled as being non-linear.

Following the same procedure as was used for the Kelvin Solid, the equations of
motion for the Standard Solid can be obtained:

f"k
1
u
1
, f"c

2
(uR !uR

1
)#k

2
(u!u

1
), (6)

where u"x
2
!x

0
and u

1
"x

1
!x

0
. The Laplace transforms of the equations of

motion are then

F"k
1
;

1
, F"(c

2
s#k

2
) (;!;

1
)!c

2
(uL !uL

1
), (7)

where uL and uL
1

are the initial displacements of u and u
1
.
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Now, consider the results of using creep testing on the Standard Solid. Substitu-
ting the Laplace transform of a constant force fM into equation (7), and solving for the
displacement

u"fM A
k
1
#k

2
k
1
k
2

!

1
k
2

e~j2tB, (8)

where j
2
"k

2
/c

2
. When the damper reaches its relaxed state (t"R), the value of

a single expression containing both k
1
and k

2
can be determined. During the period

of transient response, the transient term usually is dominant, and both the coe$c-
ient of the exponential term and the exponent j

2
can be determined by a curve "t to

the transient response. Thus, three independent measurements are available, from
which the three model constants can be calculated uniquely. From the simulation
of a ramp displacement, the measured force shown in equation (9) is obtained:

f"vN C
k
1
k
2
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1
#k
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t#
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2
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(1!e~j12t )D , (9)

where j
12
"(k

1
#k

2
)/c

2
. There are three distinct terms in the force response to the

displacement: (1) a term that is linearly dependent on time; (2) a constant term; and
(3) a transient term. Note that at time zero, the force is identically zero. This model
is therefore a signi"cant improvement over the Kelvin Solid model, which requires
an arti"cial axis shift in order to account for the initial force transient.

Calculation of the sti!ness and damping parameters follows a procedure similar
to that used for the Kelvin Solid. Once the transients have died out (t"R), the
coe$cient of the linear term in time can be determined from the slope of the
response. The projection of the slope back to time zero "xes the value of the
constant term. Then, the relaxation j

12
is calculated from the transient portion of

the response measurement. Again, three independent measurements are available
to permit calculation of unique values of the model constants.

To simulate the imposition of a harmonic displacement on the Standard Solid,
the Laplace transformed sinusoidal displacement with amplitude uN , frequency X,
and uL "uL

1
"0 is substituted into equations (7), and the resulting equations are

solved simultaneously for F. Then, performing the inverse transform on F, the force
resultant is obtained:

f"
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1
uN

c2
2
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2
)2

M[c2
2
X2#(k

1
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2
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c
2
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(10)

where again j
12
"(k

1
#k

2
)/c

2
. After the initial transients have died out (t"R),

the steady state response can be measured. Fourier analysis of the steady state
response permits the sine and cosine components of the force to be calculated.
However, since this procedure yields only two independent measurements, only
two, unique, independent parameters can be determined. In order to calculate



Figure 3. Generalized Kelvin Solid mechanical analogy.
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a third independent parameter, an additional measurement must be made. The only
remaining measurement available is to calculate j

12
from the transient portion of

the response. Based on the relative magnitudes of the terms in equation (10), that
calculation could be very di$cult, because of the contributions from the harmonic
terms.

3.3. GENERALIZED KELVIN SOLID

Another possible representation of an elastomeric damper is the Generalized
Kelvin Solid shown in Figure 3. The mechanical analogy looks like the Standard
Solid (Figure 2) with an additional Kelvin Solid added in series.

The equations of motion for the mechanical analogy of the Generalized Kelvin
Solid are
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2
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2
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2
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2
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1
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These equations of motion can be Laplace transformed, resulting in
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The creep result in equation (13) is very similar in appearance to the simulations of
the Standard Solid, equation (8):
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where j
2
"k

2
/c

2
and j

3
"k

3
/c

3
. The major di!erence in the displacements is that

the Generalized Kelvin Solid has two transient functions with di!erence relaxation
values. Herein lies the principal reason for adding the second Kelvin link. If the
values of j

2
and j

3
are su$ciently di!erent, the material will change its response

behavior with time (and, as a result, displacement). Calculation of all "ve sti!ness
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and damping element properties from this single test relies on being able to
calculate where each of the relaxation parameters is dominant. While not imposs-
ible, accurate calculation would appear to be highly dependent on the values of j

2
and j

3
.

Equation (14) shows the resultant force when the model is subjected to a ramp
displacement
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The response of the Generalized Kelvin Solid is similar in form to the ramp
simulations of the other models, except that the coe$cient of the transient term
now contains transcendental functions. Identi"cation of that coe$cient could be
quite a formidable task. Note that equation (14) is only a valid solution when B is
positive. Fortunately, when all of the sti!ness and damping parameters are positive
(as they must always be), B will always be positive.

The harmonic displacement response for the Generalized Kelvin Solid is
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H
1
"k

1
(c

2
#c

3
)c

2
c
3
,

H
2
"k

1
[(k

1
#k

3
)c2

2
#(k

1
#k

2
)c2

3
#(2k

1
!k

2
!k

3
)c

2
c
3
]c

2
c
3
,

=
ts
"c2

2
c2
3
X4#[2(k

2
k
3
#k

3
k
1
#k

1
k
2
)#B]X2#(k

2
k
3
#k

3
k
1
#k

1
k
2
)2.

Like the ramp displacement response, the response function in equation (15)
contains transcendental functions and multiple products of the component para-
meters.

4. EXTENSION TO NON-LINEAR DAMPER MODELLING

Strictly speaking, the responses that were calculated for the models described
above are only valid for models of linear damping materials. Since elastomeric
materials exhibit non-linear behavior, these results cannot be used for the purposes
of material characterization. However, the data from harmonic damper tests [8]
have shown that the non-linearities are usually relatively weak, and the sti!ness
and damping element properties can be modelled quite accurately by replacing the
element constants with element functions. This technique was successfully applied
in reference [4], where the use of sti!ness and damping functions resulted in
responses that were virtually identical to the test data.

In the preceding sections, the closed-form responses were shown to become
progressively more complex as the complexity of the models was increased. For the
Kelvin Solid, replacing the sti!ness and damping constants with functions appears
to be a reasonable step that one could take to approximate non-linear material
properties. Reference [4] demonstrated this technique only for harmonic displace-
ment test data; but if data were available, the same technique could be applied to
relaxation and ramp test data.

The closed-form responses calculated for the Standard Solid are signi"cantly
more complex than those calculated for the Kelvin Solid. However, despite the
problems that result from having to include products of the sti!ness and damping
functions, it is conceivable that a valid calculation could be performed. The same
may be stated for the relaxation responses from the Generalized Kelvin Solid.
Products of the sti!ness and damping functions could make calculation di$cult,
but probably not impossible. On the other hand, the responses for the ramp and
harmonic displacement tests from the Generalized Kelvin Solid are so complex that
calculation of unique sti!ness and damping functions would be extraordinarily
di$cult.

5. CONCLUSIONS

Closed-form responses from relaxation, ramp displacement, and harmonic dis-
placement tests were obtained analytically from three material models. The pro-
gression from the Kelvin Solid, which has one sti!ness and one damping
component, to the Generalized Kelvin Solid, which has three sti!ness and two
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damping components, shows that moderate increases in the number of components
rapidly increases the complexity of the response functions. Based on these results,
calculating unique sti!ness and damping constants for ramp and harmonic dis-
placements of a model with greater than three components could prove to be
a formidable challenge.

By replacing sti!ness and damping constants with sti!ness and damping func-
tions, the linear, closed-form responses can be used to approximate non-linear
material properties. However, because of the additional complexity resulting from
this substitution, only the simple, two- and three-component models are suitable
candidates for direct calculation. Therefore, with respect to the development of
improved analytical models of elastomeric materials, analysts would be well ad-
vised to consider limiting the complexity of their models.

One potential method for determining model parameters that was not addressed
herein is the use of system identi"cation or parameter identi"cation techniques.
These techniques would almost certainly be valuable for complex, linear solid
models, but it is not clear (to this author) how well these methods would work for
complex, non-linear solid models. For example, in reference [4] a "fth order
polynomial was used for the sti!ness coe$cient and a cubic polynomial was used
for the damping coe$cient of a Kelvin Solid, making a total of 10 coe$cients. By
extension, a minimum of 26 coe$cients would be required for the Generalized
Kelvin Solid.
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APPENDIX: NOMENCLATURE

c
1
, c

2
damping constants

F Laplace transformed force
f applied force
k
1
, k

2
, k

3
sti!ness constants

s Laplace transform variable
t time
; Laplace transformed displacement
u total damper displacement
u
1
, u

2
intermediate damper displacement}

v total damper displacement rate
x
0
, x

1
, x

2
, x

3
damper position variables

j
1
, j

2
, j

3
, j

12
damper relaxation

X harmonic excitation frequency
( ( ) initial value
( 6 ) constant value
(*) derivative with respect to time
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